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Abstract 

High-intensity precipitation represents a threat for several regions of the world because of the 

related risk of natural disasters (e.g., floods and landslides). This work focuses on low-level 

precipitation enhancement that occurs in the cloud warm layer and has been observed in relation 

to collision-coalescence (CC) leading to flash floods and extreme rainfall events in tropical and 

temperate latitudes. Specifically, signatures of precipitation enhancement (referred to as CC-

dominant precipitation) are investigated in the observations from the Global Precipitation 

Measurement (GPM) core mission Dual-frequency Precipitation Radar (DPR) over the 

central/eastern Contiguous United States (CONUS) during June 2014 – May 2018. A 

classification scheme for CC-dominant precipitation, developed for dual-polarization S-band 

radar measurements and applied in a previous work to X-band radar observations in complex 

terrain, is used as a benchmark. The scheme is here applied to the GPM ground validation dataset 

that matches ground-based radar observations across CONUS to space-borne DPR retrievals. 

The occurrence of CC-dominant precipitation is documented and the corresponding signatures of 

CC-dominant precipitation at Ku- and Ka-band are studied. CC-dominant profiles show 

distinguishing features when compared to profiles not dominated by CC, e.g., characteristic 

vertical slopes of reflectivity at Ku- and Ka-band in the liquid layer, lower freezing level height, 

and shallower ice layer, which are linked to environmental conditions driving the peculiar CC 

microphysics. This work aims at improving satellite quantitative precipitation estimation, 

particularly GPM retrievals, by targeting CC development in precipitation columns.  
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1. Introduction 

Precipitation is a key component of the global water cycle and understanding its nature and the 

atmospheric processes behind its development is a critical challenge of our times. High-intensity 

precipitation, in combination with flooding-prone geographical areas and increasing population 

demographics, may lead to human and economic losses (Gochis et al., 2014; Gourley et al., 

2016; Saharia et al., 2017; Terti et al., 2017; Warner et al., 2000). The risk of natural hazards is 

augmented by the radicalization of severe weather events in the last decades due to climate 

change (IPCC, 2014). The necessity of accurate quantitative precipitation estimation (QPE) and 

improved observations of precipitation processes at the global scale is thus undeniable (National 

Academies of Sciences, 2018), especially in those regions where ground measurements and 

hazard protection resources are scarce. Accurate QPE is essential for hydrological applications, 

climate studies, water resources management, and weather forecasts on which we rely daily 

(Hong et al., 2007; Hou et al., 2008; Lebel et al., 2009; Stephens & Kummerow, 2007). 

Remote sensing instruments have been used for decades to monitor precipitation all over 

the globe. They provide indirect measurements of precipitation across widespread regions with 

good spatiotemporal resolution. Particularly, meteorological radars are active remote sensors that 

rely on the scattering of the deployed electromagnetic beam on atmospheric particles. Common 

issues with ground-based radars, such as partial beam blockage due to orography and complex 

terrain deployment (Zhang et al., 2014), can be overcome using space-borne radars. 

Nevertheless, retrievals from the latter often show spatial and temporal resolutions lower than the 
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typical scale of the targeted precipitation variability (Derin & Yilmaz, 2014; Kirstetter et al., 

2015b; Maggioni, Sapiano, & Adler, 2016). Furthermore, transforming remote-sensing 

observations into actual rainfall rate products is based on a priori assumptions on the typology of 

precipitation (ongoing microphysical processes) and introduces unavoidable uncertainties 

(Anagnostou et al., 2013; Kirstetter et al., 2015a; Le & Chandrasekar, 2013; Zhang, Qi, 

Kingsmill, & Howard, 2012; Zhang et al., 2014). 

 Precipitation is usually classified into two broad categories, namely stratiform and 

convective. Stratiform precipitation is characterized by long lasting, low intensity showers 

occurring in a stable environment. In a cloud with temperatures lower that 0°C, where the water 

droplets are supercooled and ice and liquid phase particles coexist, the Bergeron process (or 

“cold-rain process”; Houghton, 1951) plays a fundamental role in efficiently increasing the 

crystals size due to accretion. Such crystals eventually start precipitating and may or may not 

melt in the cloud melting layer (ML) before reaching the surface as rain or snow. Convective 

precipitation, on the contrary, develops in unstable and moist atmospheres where strong updrafts 

mix hydrometeors and lift large particles upward. It usually falls as showers limited in spatial 

extension and duration. It is associated with thunderstorms, high-intensity rainfalls, and 

sometimes hail or graupel.  

A third precipitation category has recently drawn the attention of operational weather 

services and researchers because of its widespread and threatening features. Hamada et al. (2015) 

showed that the highest rainfall rates in the tropics and subtropics are attributable to low-echo 
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centroid (LEC) systems, rather than to purely convective precipitation. Environmental conditions 

associated with LEC systems are high lower-atmosphere moisture concentrations, high relative 

stability, and large liquid layer extension (Gochis et al., 2014; Grams et al., 2014; Petersen et al., 

1999; Vitale & Ryan, 2013). The same signatures have been observed in warm-rain (tropical) 

precipitation systems, which indicate intense rainfall events originated by clouds with 

temperatures everywhere higher than 0°C. Despite this definition, such systems have often been 

observed to extend above the 0°C isotherm level and include ice phase hydrometeors (Carr et al., 

2017; Porcacchia et al., 2017). 

 The three precipitation regimes sometimes occur within the same system (e.g., in a 

Mesoscale Convective System) and the definitions given above may overlap, resulting in 

misclassification and precipitation retrieval inaccuracy. From a microphysical point of view, 

many processes are involved, but our knowledge of them is limited by the available information 

from the observing sensors. For instance, with radar observations, convective precipitation is 

recognizable by isolated cells of high reflectivity (Z), while stratiform precipitation is 

characterized by Z peaking in the ML, indicative of a well-defined bright band (BB) region, and 

lower elsewhere. Nevertheless, convective and tropical precipitation can show a radar BB 

signature as well and Z values below the BB similar to stratiform precipitation (Xu et al., 2008). 

Additional microphysical information is thus necessary to distinguish the precipitation typology. 

 A characterization of precipitation regimes based on the signatures of the microphysical 

processes involved is proposed here to improve classification and rain rate retrievals. 
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Particularly, we focus on warm-rain processes that take place in the liquid layer of a cloud (e.g., 

collision-coalescence, evaporation, breakup, and size sorting). Collision-coalescence (CC) is 

responsible for efficient drop-size increasing towards the ground and is the main cause of low-

level precipitation enhancement (Stoelinga et al., 2013). In a precipitation column dominated by 

CC, the drops that have grown enough due to chaotic collisions start to precipitate towards the 

surface and collect smaller particles in their descent, resulting in rainfall rate enhancement. CC 

tends to be dominant in marine clouds, but also overland at mid- and intertropical-latitudes in 

clouds extending above the 0°C isotherm level (Carr et al., 2017), and in mountainous regions 

where warm moist air is lifted due to orography (Erlingis et al., 2017; Porcacchia et al., 2017). 

 Several studies have attempted to identify warm-rain/tropical precipitation leading to 

low-level enhancement. A first type of classification scheme relied on active/passive 

observations from satellite-based sensors and on the assumption that warm-rain precipitation is 

characterized by the absence of an ice phase (Liu & Zipser, 2009). Unfortunately, such type of 

scheme was effective only for tropical/oceanic clouds. Xu et al. (2008) extended their search for 

warm-rain precipitation to CONUS by analyzing vertical profiles of reflectivity (VPR) from the 

Next Generation Weather Radar (NEXRAD) network. Z was shown to increase toward the 

surface in the liquid layer most probably due to CC. Their efforts were complemented by Grams 

et al. (2014) who introduced environmental variables to segregate conditions in which warm-rain 

processes are likely to develop and defined the probability of warm-rain (POWR). The NOAA 

National Severe Storm Laboratory (NSSL) Multi-Radar Multi-Sensor (MRMS) system, which 
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integrates about 180 operational radars across CONUS (and southern Canada), currently employs 

POWR to identify seven different types of surface precipitation, including tropical stratiform and 

tropical convective (Zhang et al., 2015). Nevertheless, the main limitations of the 

abovementioned works are the use of single-polarization radar observations (despite the 

polarimetric capability of the operational radars) and the restricted applicability to central/eastern 

CONUS. Carr et al. (2017) and Porcacchia et al. (2017) proposed a classification scheme for 

warm processes based on polarimetric retrievals from the NEXRAD network over eastern 

CONUS and from the NOAA/NSSL X-band polarimetric radar (NOXP) deployed in the 2014 

IPHEx North Carolina field campaign, respectively. They showed that it is possible to detect 

low-level precipitation enhancement by analyzing the vertical evolution of the reflectivity factor 

at horizontal polarization (Zh) and of the differential reflectivity (Zdr) in the cloud liquid layer. 

However, they did not guarantee that the observed precipitation enhancement was due to CC 

development alone. That is why it is advisable to refer to these precipitation systems as CC-

dominant. 

This work is intended to extend the detection of low-level enhancement signatures to 

space-borne sensors. We focus on the Global Precipitation Mission (GPM; Hou et al., 2013) core 

observatory, a National Aeronautic and Spatial Administration (NASA) – Japanese Aerospace 

Exploration Agency (JAXA) joint mission launched in orbit around the Earth on February 27th 

2014, which hosts the first space-borne Dual-frequency Precipitation Radar (DPR). Kobayashi et 

al. (2018) analyzed DPR Ku-band VPRs below the BB and observed a significant fraction of 
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profiles with reflectivity increasing toward the ground over the North American continent. Such 

behavior was explained with raindrop size increase due to CC triggered by large-scale upwards 

motion in the lower troposphere. This study looks at the DPR reflectivity profiles at both Ku- 

and Ka-band for the sake of completeness. Low-level precipitation enhancement signatures are 

first identified with dual-polarization radars at the ground and the corresponding signatures in the 

DPR observations from space are then documented. The goal is to identify CC-dominant 

precipitation in the DPR dataset and isolate its characteristics. More generally, this effort is 

aimed at improving remote-sensing based QPE by identifying specific precipitation processes 

(e.g., CC) that are not parameterized in satellite retrieval algorithms but represent the dominant 

component of warm-rain/tropical precipitation. The next section (2) introduces the dataset 

matching ground-based polarimetric radar measurements and space-borne DPR observations. 

The methodology is described in section 3. Results are shown and discussed in section 4, and 

conclusions are drawn in section 5, which also discusses future challenges. 

 

2. Data 

The proposed approach identifies low-level precipitation enhancement (CC-dominant 

precipitation hereinafter) by using ground-based radar polarimetric observations and the 

classification scheme adopted by Porcacchia et al. (2017) and Carr et al. (2017), and then 

matches the corresponding precipitation profiles with the space-borne radar observations from 

GPM DPR. The ground-based selection of profiles allows isolating CC-dominant precipitation 
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and studying its signature in the DPR retrievals. 

 The NOAA Weather Surveillance Radar-1988 Doppler (WSR-88D) network, known as 

NEXRAD, provides ground-based polarimetric radar observations. NEXRAD includes 160 S-

band Doppler radars distributed across the US and updated to polarimetric capability by the end 

of 2013. The WSR-88D radars operate at 2.7-3.0 GHz and scan the atmosphere at antenna 

elevations varying from 0.5º to 19.5º. We will refer to WSR-88D as ground radar (GR) 

hereinafter. 

 GPM DPR consists of the Ku-band precipitation radar (KuPR, operating at 13.6 GHz) 

and the Ka-band precipitation radar (KaPR, operating at 35.5 GHz). A KuPR scan comprises 49 

beams in the azimuthal angle interval of ±17º cross track and each beam identifies a separate 

footprint of approximately 5 km diameter at the earth surface. The KaPR provides measurements 

in two scan modes: matched scan (MS) and high-sensitivity scan (HS). In the MS mode, KaPR 

identifies 25 footprints co-aligned with the inner KuPR footprints. Both KuPR and KaPR scan 

the atmosphere at vertical range steps of 250 m and zenithal angles varying between ±8.5º cross 

track. The HS mode is used for detecting light rain and snow and the KaPR beams are interlaced 

within the scan pattern of the MS beams. The vertical range resolution is 500 m. 

 

2.1 Matched Dataset 

The matched dataset provided by the GPM ground validation network (VN) is used in this study 
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(ftp://hector.gsfc.nasa.gov/gpm-validation/). The VN performs a direct spatiotemporal matchup 

of DPR and GR measurements (as described in detail at 

https://pmm.nasa.gov/sites/default/files/document_files/Val_Network_Users_Guide_Vol_2_Nov

2015.pdf). For sake of simplicity, we will name this matched-up dataset DPR-GR hereafter. The 

matching procedure is applied to a total of 75 GRs distributed over the US and other regions 

from international networks. This work focuses on central/eastern CONUS (no access was 

guaranteed to GR observations in the central/western part) and all the match-ups between DPR 

and GR from June 2014 to May 2018 are used. Figure 1a displays the overpass of DPR over GR 

locations for a specific orbit on 06/02/2015. The DPR-GR dataset archives GR uncorrected 

polarimetric variables and DPR level 2 retrievals (Iguchi et al., 2016). Version 6 DPR data in the 

MS scan mode were selected in this work. 

The geometry matching technique to match observations at the same location, time, and 

resolutions from ground and space is described in Bolen & Chandrasekar (2003) for the Tropical 

Rainfall Measurement Mission (TRMM) Precipitation Radar (PR), and was adapted to GPM-

DPR by Morris & Schwaller (2011) to derive the DPR-GR dataset. Firstly, all the DPR range 

bins for a fixed beam/footprint intersected by one GR sweep at a given antenna elevation are 

averaged along the vertical over the GR width (Fig. 1b). The DPR-GR matched volume 

comprises a “waffle” of GR measurements over the DPR footprint (Fig. 1c). Secondly, ground 

polarimetric measurements exceeding a fixed threshold (specific to each variable) are averaged 

over the waffle in a single value to compare with the DPR measurements. Additional information 
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is derived for each radar polarimetric variable, including the total number of bins within a waffle, 

the number of bins exceeding the threshold (non-missing bins), and the standard deviation along 

with the averaged value. Only the 25 DPR inner profiles belonging to the MS scan mode are 

used to match GR observations with DPR retrievals at Ku- and Ka-band. Iguchi et al. (2016) 

describe the processing of DPR retrievals in a series of hierarchical modules that compose the 

DPR level 2 retrieval algorithm. 

 In general, six DPR variables would be of interest for this type of study. Two are the 

direct observables, that is, the measured effective (or equivalent) radar reflectivity factor at Ku- 

and Ka-band (as defined for example in Meneghini & Kozu, 1990). In one of the preparatory 

modules of the DPR algorithm (i.e., the Vertical Profile Module) these are corrected only for the 

attenuation introduced by water vapor, molecular oxygen, and cloud liquid water estimated from 

general circulation model inputs. These corrections are in general small (i.e., less than 2 dB at 

Ka-band, and much less than 1 dB at Ku band). The resulting variables will be referred to 

hereinafter as the ‘measured reflectivities’, Zm, in dBZ. Their Dual Frequency Ratio – i.e., the 

base 10 logarithm difference between Zm(Ku) and Zm(Ka) – will be indicated by DFRm. 

The next three variables are derived from them: the attenuation corrected effective (or 

equivalent) radar reflectivity factor (hereinafter 'corrected reflectivity’, Ze, in dBZ) at Ku- and 

Ka-band, and their difference (DFRe, in dB). These are all are produced by the DPR algorithm 

after a complex set of modules that aim at classifying and estimating microphysical properties. 

While ideally the analysis of Ze and DFRe would lend itself more readily to interpretation in 
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terms of mean particle sizes and particle number concentrations, its use in this case is challenged 

by the fact that we apply a complex retrieval algorithm about microphysics which do not 

consider collision-coalescence processes. Notably, the Classification Module within the DPR 

level 2 algorithm does not include a parameterization for CC-dominant precipitation or, more 

generally, warm-rain. Precipitation is classified as two main categories (stratiform and 

convective), plus the “other” category that accounts for precipitation detected only at altitudes 

higher than the 0˚C level or noisy data (Awaka et al., 2016). As discussed in the previous 

section, CC processes can occur in pure warm-rain conditions, or in the liquid-layer of cold-rain 

columns. Furthermore, the level 2 algorithm Solver Module operates with regularization 

constraints that limit the degrees of freedom by which the retrieved microphysical properties can 

vary along a profile. Therefore, these become confounding factors and may create a circular 

problem when our intent is first and foremost to identify whether CC processes do leave a 

detectable signature on the DPR data.  

On the other hand, the use of 'measured' reflectivities offers a more direct means to identify 

observable characteristics modes associated to CC, if any. However, the resulting salient features 

must be carefully interpreted in light of the attenuation that affects them. Their use will be 

explicitly specified throughout the manuscript. 

 

2.2 Quality Controls 

The GR polarimetric variables to detect CC-dominant precipitation are Zh and Zdr. Zh (dBZ) 
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depends on the concentration, size, state, and shape of particles in the radar volume. Zdr (dB) is 

defined as the difference between the reflectivity factors at horizontal and vertical polarization. It 

provides insight of the raindrop average size in the radar volume, as well as the spatial 

orientation of maximum dimension. Before using the GR data as input to the scheme for CC-

dominant precipitation, several quality control steps are germane: 

• Only data within 60 km from each GR location are selected, in order to ensure scanning 

the lower levels of the atmosphere (liquid layer) and to limit the effects of radar beam 

broadening (Kirstetter et al., 2013); 

• The volume filling is defined as the percentage of bins in the waffle with Zh values 

greater than 15 dBZ and non-missing values for the other polarimetric variables as Zdr. 

Only data from volumes filled more than 75% are selected to ensure representativeness of 

the measurements in each waffle; 

• The standard deviation of the radar variables computed within each waffle is also used to 

ensure the representativeness of the values. Only data with standard deviation less than 

the first quartile of such distribution are selected, in order to limit the horizontal 

variability within the waffle. 

• Hydrometeor type information available for each bin within a waffle is used to restrict the 

analysis to liquid precipitation. For a given profile, only waffles with at least 80% of the 

bins belonging to liquid hydrometeor categories (either rain or drizzle) are selected.  
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3. Methodology 

The polarimetric classification scheme for CC-dominant precipitation introduced by Carr et al. 

(2017) and adapted to complex terrain by Porcacchia et al. (2017) relies on the microphysical 

interpretation of the vertical variations of Zh and Zdr in the liquid layer. Every microphysical 

process that develops in the liquid layer (e.g., collision-coalescence, evaporation, breakup, and 

size sorting) shows a peculiar signature in terms of the abovementioned variables. Particularly, 

CC is related to an increase of both Zh and Zdr towards the surface (Kumjian et al., 2012) 

corresponding to negative slopes in the vertical profiles of Zh and Zdr when the atmospheric 

height is measured from the ground upwards. In the (ΔZh, ΔZdr) parameter space (Kumjian & 

Prat, 2014) the CC process is represented by the first quadrant, where the variation of both 

polarimetric variables Zh and Zdr towards the surface is positive (Figure 2). For each profile, ΔZh 

and ΔZdr are calculated between the height just below the ML bottom and the clutter free height 

closest to the ground. 53.7% of the precipitation profiles selected for this study are dominated by 

CC. The selection procedure for these profiles is described below. 

 Vertical profiles of Zh and Zdr are calculated for each precipitation column, together with 

their slopes in the liquid layer. Because slanted precipitation can impact the slopes of Zh and Zdr 

and induce false detection of CC, slopes are also extracted from the four neighboring columns 

(two along and two cross track direction of GPM) and compared to the one under investigation. 

When the slopes of Zh and Zdr are both negative within the studied column and in the 
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neighboring columns, a CC-dominant profile is identified. Likewise, a non-CC-dominant (NCC) 

profile is identified when at least one between the slopes of Zh and Zdr is positive within the 

studied as well as the neighboring columns. Precipitation columns where the slopes of Zh and Zdr 

profiles are inconsistent among neighboring columns are set aside. The set of NCC profiles, 

complementary to the set of CC-dominant profiles, represent precipitation columns where 

microphysical processes other than CC are dominant. A total of 797 profiles are identified as 

CC-dominant and 644 as NCC. The limited sample is due to the conservative quality controls 

described in section 2.2. In addition, at least two measurements in the liquid layer are required to 

calculate the slopes of Zh and Zdr profiles, which reduces significantly the sample size. As a 

result, caution is needed in interpreting the proportion of NCC profiles to CC-dominant profiles. 

Note that this is a tentative classification and does not guarantee the identification of CC 

alone, whose signatures might overlap with breakup’s (Kumjian & Prat, 2014). The (ΔZh, ΔZdr) 

parameter space methodology targets drop-size increase and thus precipitation enhancement, 

which are better described as CC-dominant precipitation. 

Once CC-dominant and NCC profiles are identified thanks to GR polarimetric 

measurement, the corresponding DPR columns are extracted from the DPR-GR dataset and 

analyzed to study the space-borne signatures of CC-dominant precipitation. 

Figures 3a-b show an example of vertical profiles of Zh and Zdr for a precipitation event 

observed on 03/09/2014 in Wisconsin, USA (latitude 45.32 N, longitude 98.36 W). The liquid 

layer goes from the BB bottom to the highest height between the ground clutter-free level and 1 
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km. The increase in both Zh and Zdr in the liquid layer, consistent with the neighboring columns 

(not shown), identifies this precipitation column as CC-dominant. The analysis of the profile of 

Dm,GR, the mean diameter obtained from GR polarimetric observations, confirms that drops are 

increasing in size in the liquid layer towards the surface due to CC (Fig. 3c). DPR retrievals of 

the same event are displayed in Figures 3d-f. In Figure 3f, Dm,DPR refers to the median diameter 

retrieved by the Solver Module within the DPR level 2 algorithm. While the attenuation 

corrected reflectivity Ze increases in the liquid layer towards the ground at both Ku- and Ka-

band, the trend of the measured reflectivity Zm is not straightforwardly increasing. At Ka-band 

the attenuation effect is particularly noticeable and results in decreasing reflectivity. The lack of 

an obvious marker of CC is part of the reason why this specific process, which is the basis for the 

low-level precipitation enhancement, is challenging for the GPM products. The current DPR 

level 2 retrieval scheme does not account for the nature of CC microphysics and models the DSD 

of the selected event with a stratiform parameterization (this specific profile is classified as 

stratiform from the Classification Model). It contributes to the difference of about 0.3 mm in the 

overall values of Dm,GR and Dm,DPR. Nevertheless, the Solver Module is able to capture the trend 

in the drop median volume that shows a slight increase towards the surface (a direct consequence 

of the DFRe profile in the liquid layer), consistent with GR polarimetric observations. 

Figure 4 presents cross-track and along-track DPR observations for the 03/09/2014 

precipitation event. Figures 4a and 4b show Zm(Ka) and Zm(Ku), respectively, as a function of 

the GPM cross-track scanning coordinate (x-axis) and the atmospheric height (y-axis). Similarly, 

This article is protected by copyright. All rights reserved.



18 
 

Fig. 4c and 4d show the reflectivity profiles along track. Reflectivity is clearly less attenuated at 

Ku-band and allows to distinguish a BB extending in both cross- and along-track directions for at 

least 45 km at a height of about 4.5 km. Below the BB, reflectivity reaches 50 dBZ that is close 

to the BB peak value. Some of the precipitation columns neighboring the studied column 

(indicated by a black vertical line) manifest the same increasing trend in reflectivity highlighted 

in Fig. 3d. The precipitation column (profile) is part of a larger system extending for at least 150 

km in both directions and characterized by convective cores as well as stratiform-like BB regions 

in which signatures of CC development are detected.  

  

4. Results 

Figure 5 shows the spatial distribution of CC-dominant and NCC profiles during spring (MAM), 

summer (JJA), fall (SON), and winter (DJF). Profiles are accumulated within grid boxes of 5º 

latitude × 5º longitude; the size of the markers is proportional to the number of events and the 

symbol refers to the precipitation category with the highest occurrence (circles for CC-doninant 

and triangles for NCC). CC-dominant events are scattered across the central/eastern CONUS 

with different distributions during the four seasons; they are quite frequent and ubiquitous in 

spatial occurrence. Nevertheless, at central longitudes and central/northern latitudes 

(corresponding approximately to the states of Kansas, Nebraska, Iowa, Minnesota, and 

Wisconsin), CC-dominant profiles outnumber NCC profiles throughout the entire year. It is also 

remarkable that the amount of detected profiles is higher during the cold seasons (fall and winter, 
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Fig. 5c and 5d, respectively). This is probably a consequence of the adopted quality control that 

excludes data with low horizontal homogeneity, penalizing warm-season baroclinic frontal 

instabilities and turbulent mixing. Furthermore, during winter, CC-dominant events tend to 

concentrate in the southeastern CONUS. This can be imputed to the proximity to the ocean, 

which provides a supply of moisture in the lower atmospheric levels to trigger CC development, 

and to the higher ML depth (Grams et al., 2014). On the other hand, during the warm seasons 

(spring and summer, Fig. 5a and 5b, respectively) there is no dominance of CC-dominant events 

in the same coastal regions. Further analysis is required to properly investigate this point.   

 

4.1 Vertical Profiles of Reflectivity 

In the following is presented a comparison of vertical profiles of Zm and DFRm between CC-

dominant and NCC profiles. NCC profiles include mostly stratiform precipitation according to 

the Classification Module within the DPR level 2 algorithm (only 1 profile is classified as 

convective). Furthermore, the majority of CC-dominant profiles are classified as stratiform from 

the same DPR algorithm. The intention here is to investigate the separation between CC-

dominant and NCC profiles in terms of observations in the DPR profiles. 

 VPRs are extracted for CC-dominant and NCC profiles from Zm(Ku) and Zm(Ka) 

observations at varying heights. The conditional distributions for the vertical profiles of 

measured reflectivity and DFRm are shown in Fig. 6. DFRm (dB) is largely used by the GPM 

community to separate liquid and solid precipitation. Particularly, DFRm plays a fundamental 
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role in the DPR level 2 retrieval algorithm for attenuation correction and BB identification 

(Awaka et al., 2016). Figures 6a and 6b show VPRs at Ku- and Ka-band, respectively. The 

median, 25th and 75th quantiles of reflectivity, as well as the 0ºC level, are presented. The y-axis 

represents the height relative to the 0ºC level, to mark the difference between the reflectivity 

behavior in the cold cloud layer and in the melting/liquid layers.  

Focusing first on the cold layer, CC and NCC distributions are shifted by about 3 dB. The 

25th NCC Zm quantile aligns well with the 50th CC Zm quantile. Such difference is slightly 

reduced at Ka-band, but it is still indicative of either a lower concentration of ice particles in a 

CC-dominant profile or presence of particles with lower scattering properties. This is consistent 

with the findings of Carr et al. (2017) that used ground-based S-band radar data for their 

analysis. In reminding that we are analyzing Zm (as opposed to Ze), a specific feature supports 

this interpretation: the difference in Zm and DFRm between CC-dominant and NCC is almost 

constant in the cold layer, indicating that difference in attenuation effects is negligible (i.e., albeit 

theoretically possible, it is hard to envision a systematic vertical change in the microphysics that 

exactly compensates for cumulative attenuation effects in an almost identical fashion in the two 

cases). 

Regarding the ML, NCC profiles manifest a clear BB just below the 0ºC isotherm at Ku-

band, while for CC-dominant profiles the BB is less pronounced and narrower. This is consistent 

with the melting of a reduced ice content or possibly with the melting of smaller frozen 

hydrometeors. 
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The most evident signatures separating CC-dominant from NCC profiles appear in the 

liquid layer. Consistent with S-band reflectivity profiles (Xu et al., 2008), Ku-band Zm increases 

in the liquid layer towards the surface for CC-dominant profiles, while a decreasing trend is 

observed for NCC profiles. A similar but less evident difference is noticeable at Ka-band, i.e., 

the CC-dominant profiles have a “less positive” slope in the liquid layer than the NCC. 

Interestingly, the DFRm vertical profiles do not show significant differences between non-CC 

dominant and NCC (Fig. 6c). Since these are profiles affected by precipitation-induced 

attenuation, they must be interpreted accounting for it. First, we note that in general these cases 

cluster below 35 dBZ at the top of the liquid layer: in these regimes, specific attenuation at Ku-

band is less than 0.15 dB/km (see e.g., Meneghini & Kozu, 1990), and therefore a negligible 

contributor compared to the observed features. At Ka-band, rain-induced attenuation can be 6-10 

times larger than at Ku-band, it therefore spans a significant range from less than 0.2 dB/km for 

Ze(Ku) around 25 dBZ to almost 1 dB/km at around 35 dBZ. These numbers provide general 

bounds to interpret the liquid layer in Figure 6: Zm(Ku) increases towards the surface in CC-

dominant profiles by 4-6 dB more than NCC, a difference that cannot be attributed to 

attenuation; a similar statement is valid at Ka, but those slopes are clearly modulated also by the 

attenuation towards lower numbers. These features point at breakup and evaporation processes 

dominating the evolution of NCC cases, while CC processes dominate the CC-dominant profiles. 

It is interesting to note that the behavior of DFRm is almost identical between CC-dominant and 

NCC, indicating that, for this specific process, the attenuation and differential scattering compete 
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against each other and resulting in the DFRm being an inconclusive observable. If we name 

A(Ku) and A(Ka) the path attenuation from the radar to the range of interest r at Ku- and Ka-

band, respectively, then DFRm=DFR+delA, where delA=A(Ka)-A(Ku). The delA term often 

dominates the behavior of DFRm and is not directly related to the DSD characteristics at the 

range r because it depends on the hydrometeors along the path from the radar to the range r. 

While DFR is closely related to Dm at the range of interest, DelA plays a fundamental role in 

masking the DFR behavior, which is supposed to increase with increasing Dm due to CC. 

A closer look at the CC-dominant and NCC data sets is required to account for the 

individual characteristics of the precipitation columns. As shown in Fig. 5, the precipitation cases 

selected for this study belong to different seasons and locations and therefore need to be assessed 

separately. The vertical slopes of reflectivity at Ka- and Ku-band, as well as the slopes of DFRm, 

are calculated in the cold and warm layers for each precipitation column and their distributions 

are presented in Fig. 7. The ice layer is defined as the vertical portion of the atmosphere between 

the storm top height (STH) and a 0.5-km reference height above the 0ºC level (Fabry & 

Zawadzki, 1995). The liquid layer extent, as abovementioned, is limited by the ground clutter. 

Among all the distributions shown in Fig. 7, the CC and NCC distributions of reflectivity slope 

at Ku- and Ka-band in the liquid layer (Fig. 7a and 7b, respectively) appear to be more clearly 

separated. 

 The two-sample Kolmogorov-Smirnov (2KS) test was applied to each pair of 

distributions to assess the degree of separation between them, and the asymptotic significance 
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parameter (p-value) was calculated. The p-values, as well as the median and standard deviation 

(SD) of the distributions, are presented in Table 1. As expected, the slopes of reflectivity at Ku- 

and Ka-band in the liquid layer show very small p-values (<1.0e-15) indicating a low probability 

for CC-dominant and NCC distributions of belonging to the same parental distribution. On the 

contrary, p-values are higher for DFRm slopes in both liquid and ice layers and median values of 

CC-dominant and stratiform slopes are similar. This means that the DFRm slopes, and more 

generally the DFRm profiles, are a worse discriminant between CC-dominant and NCC 

precipitation than Ku- and Ka-band profiles of reflectivity. This result is not intuitive in a context 

where DFRm is used for classification purposes in the level 2 algorithm. 

 

4.2 Macrophysical Properties 

In the previous section, the slopes of reflectivity have been calculated in the ice and liquid layers 

for CC-dominant and NCC profiles. We now focus on macrophysical characteristics of these 

layers. The intent is to document the cloud properties (as seen by DPR) of CC-dominant 

precipitation and compare them to NCC profiles. Among the macrophysical observables studied 

here, the ML is defined as the BB region of a stratiform precipitation column and its depth 

usually does not exceed 0.8 km (Wolfensberger et al., 2016), even though the vertical resolution 

of DPR observations may result in its apparent thickening. 

 Figure 8 shows CC and NCC distributions of STH (Fig. 8a), as well as ice, melting and 

liquid layer depths (Figs. 8b-d). The median and SD of each distribution are presented in Table 
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2, together with the 2KS p-values for each CC/NCC pair of distributions. First off, the 

distributions for NCC precipitation have generally a wider spread than the CC-dominant 

distributions. Recall that these profiles are classified by DPR as stratiform and they may include 

a variety of precipitation processes and environmental features. According to the parameters with 

the lowest 2KS p-values (2.56e-15 and 8.22e-15 for STH and ice layer depth, respectively), CC-

dominant profiles are characterized by a lower vertical cloud extension and a narrower ice layer. 

These factors indicate a lower concentration of ice hydrometeors in the column for CC-dominant 

profiles and are supported by the ML depth distribution that has a lower median value. This is 

again consistent with the findings of Carr et al. (2017) with ground-based S-band radars. On the 

contrary, the liquid layer depth is a lesser discriminant to distinguish CC-dominant from NCC 

profiles. 

 The reflectivity enhancement in the ML is defined as the difference between the peak of 

reflectivity (Zpeak) and the snow reflectivity (Zsnow) just above the BB (Zawadzki et al., 2005). In 

the case of stratiform precipitation, a decrease in enhancement is related to an increase of the 

density of ice above the ML (density effect). In this work, the Zm,peak - Zm,snow enhancement has 

been calculated for CC-dominant and NCC profiles, and its distributions at Ku- and Ka-band are 

shown in Fig. 8e and 8f, respectively. Median, SD, and 2KS p-values for the CC/NCC pairs are 

listed in Table 2. The separation in terms of enhancement between CC-dominant and NCC 

precipitation is weaker if compared to the factors discussed above. Nonetheless, NCC 

precipitation shows higher median values at both Ku- and Ka-band. In the light of the density 
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effect, NCC profiles are characterized by a lower ice density than CC-dominant ones above the 

ML. The presence of larger ice phase particles (more aggregation and less riming) in NCC 

profiles might explain the lower density and greater extension of the cold layer, as pointed out by 

VPR and STH. On the contrary, smaller ice phase particles in a CC-dominant profile will result 

in higher density above the ML and lower extension of the cold layer. Furthermore, a limiting 

factor to consider in the density effect interpretation is the vertical resolution of DPR. 

 

5. Conclusions 

This work investigates precipitation columns characterized by low-level enhancement ascribable 

to dominance of the collision-coalescence process in the liquid layer and investigates their space-

borne radar signatures. The study is performed during June 2014 – May 2018 in central/eastern 

CONUS. A dataset composed of WSR-88D polarimetric ground radar data matched up with 

GPM DPR observations is used. Firstly, the polarimetric radar classification scheme developed 

by Porcacchia et al. (2017) is used to identify CC-dominant events with GR observations. 

Secondly, thanks to the matched dataset, CC-dominant cases are retrieved within DPR 

measurements and their signatures at Ku- and Ka-band are studied. 

 CC-dominant cases occur throughout the entire year within the study region, with a 

preferable geographical distribution along coastal southern regions during winter, and they often 

show clear signatures of a BB and an ice phase above it. The measured DPR reflectivity profiles 

at Ku- and Ka-band are used to juxtapose CC-dominant to NCC profiles. The latter profiles show 
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higher reflectivity values in the ice layer and a more pronounced ML than CC-dominant profiles. 

Moreover, the calculated reflectivity slopes in the liquid layer show a significant separation 

between the two classes of events, with Ku-band reflectivity increasing toward the ground when 

CC dominates in the liquid layer. 

Among the other macrophysical cloud characteristics investigated in this study, the STH 

and the depth of the ice layer show the highest power to discriminate CC-dominant from NCC 

profiles. These indicators, together with the reflectivity values observed in the ice and melting 

layers, point towards a higher ice content for NCC profiles (classically defined stratiform 

precipitation). This result is expected, since CC is a warm process that does not require cold 

microphysics to occur in a cloud liquid layer. Nevertheless, CC dominance in the liquid layer 

does not imply absence of cold processes within the cloud. Further investigation is required to 

isolate the specific cold processes occurring in CC-dominant columns versus the ice 

development in stratiform precipitation. Another emerging characteristic of CC-dominant 

profiles is the increase of reflectivity at Ku-band in liquid layer (at Ka-band the increase is 

mitigated by a larger attenuation of the radar signal), which corresponds to the increase in Zh 

observed at S-band. This work also shows that the DFRm profiles for CC-dominant and NCC 

precipitation tend to be very similar in both liquid and ice layers, making this variable less useful 

for CC-dominant classification. 

In the DPR Level 2 retrieval algorithm, the attenuation correction applied to the Ku- and 

Ka-band VPRs depends on the precipitation typology that is determined by the Classification 
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Module. In many profiles this attenuation correction is initialized by an estimate of the Path 

Integrated Attenuation (PIA), which is independent of the microphysical assumptions when 

derived by one of the Surface Reference Techniques (SRT). If the PIA estimate is accurate, the 

solutions can be considered independent from the rain-type classification and microphysics. 

However, in many cases the PIA estimate is affected by sources of error (e.g., partial beam 

filling and multiple scattering; Battaglia et al., 2015; Battaglia et al., 2016; Kirstetter et al., 

2015b) that create significant ambiguities and the deterministic iterative retrieval in the Solver 

Module has been demonstrated to fail to converge to the correct “epsilon-adjustment” or to 

converge to obviously erroneous solutions. This is the primary reason why the operational DPR 

algorithm does have different tables for the different precipitation regimes.  

Furthermore, there is one particular aspect that makes proper detection of CC processes 

even more relevant in this context: even assuming the ideal case where a perfect PIA estimate is 

provided by the SRT, the DPR algorithm has to apportion part of it to the lowest fraction of the 

column which is obscured by the surface clutter (because the retrieval starts from the first range 

bin unaffected by surface clutter). As shown in Figure 6, the occurrence of CC greatly affects the 

shape of the reflectivity profiles increasingly towards the surface. 

  An improved classification scheme would account for the occurrence of CC in a 

precipitation column. Such occurrence in a CC-dominant profile (or a classically defined warm-

rain situation), versus CC occurring in a stratiform rain situation, will be possibly associated to 

different microphysical modes. However, we don’t have at this time sufficient statistics to 
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implement informed specific algorithms and, moreover, such a task is beyond the scope of the 

present study.  

 The presented work is limited by the very conservative quality controls applied to the 

dataset, specifically to GR polarimetric observations. An extension of this study will explore less 

restrictive conditions on the data (e.g., higher variability in the measurements within the radar 

volume corresponding to less horizontal homogeneity) and additional profiles that are currently 

discarded because of slanted precipitation issues. Future work should also focus on the 

development of a classification algorithm for low-level precipitation enhancement based on the 

satellite-borne CC-dominant precipitation signatures documented here (e.g., slopes of reflectivity 

profiles, cloud layer depths, and reflectivity enhancements) to use as input to a machine-learning 

model. 
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Table Captions 

Table 1. Reflectivity and DFR slopes in the liquid layer and the ice layer for CC-dominant and 

NCC profiles. 

Table 2. Macrophysical properties for CC-dominant and NCC profiles.  
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Figure Captions 

Figure 1. Distribution of WSR-88D GRs (circles) and the 06/02/2015 GPM orbit track (strip) 

over the CONUS (a); schematics of a DPR beam intercepting GR beams at two antenna 

elevations (b); schematics of a waffle of GR bins for a fixed antenna elevation (c).    

Figure 2. (ΔZh, ΔZdr) parameter space relating ΔZh and ΔZdr in the liquid layer. 

Figure 3. Precipitation event of 09/03/2014 at latitude 45.32 N and longitude 98.36 W. Vertical 

profiles of Zh (a), Zdr (b), Dm,GR (c) from GR. Vertical profiles of Zm(Ku), Ze(Ku) (d), Zm(Ka), 

Ze(Ka) (e), DFRm, DFRe (f) and Dm,DPR (g) from DPR. 

Figure 4. Precipitation event of 09/03/2014 latitude 45.32 N and longitude 98.36 W. Maps of 

DPR reflectivity cross track at Ka-band (a) and Ku-band (b). Maps of DPR reflectivity along 

track at Ka-band (c) and Ku-band (d). 

Figure 5. Spatial and seasonal distribution of CC-dominant and NCC profiles.  

Figure 6. Conditional distributions of vertical profiles of Zm(Ku) (a), Zm(Ka) (b), and DFRm (c) 

for CC-dominant and NCC profiles. 

Figure 7. Distributions of reflectivity and DFRm slopes for CC-dominant and NCC profiles. 

Liquid layer: Zm(Ku) slope (a), Zm(Ka) slope (b), and DFRm slope (c). Ice layer: Zm(Ku) slope 

(d), Zm(Ka) slope (e), and DFRm slope (f). 

Figure 8. Distributions of cloud macrophyscial properties for CC-dominant and NCC profiles: 
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storm top height (STH) (a), ice layer depth (b), melting layer (ML) depth (c), liquid layer depth 

(d), Ku-band enhancement (e), and Ka-band enhancement (f). 
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Figure 2. (ΔZh, ΔZdr) parameter space relating ΔZh and ΔZdr in the liquid layer. 

This article is protected by copyright. All rights reserved.



QJ_3611_Figure 7.PNG

This article is protected by copyright. All rights reserved.



Graphical Abstract 

 

Title: Investigating the GPM Dual-Frequency Precipitation Radar Signatures of Low-Level 

Precipitation Enhancement 

 

Authors: Leonardo Porcacchia*, Pierre-Emmanuel Kirstetter, Viviana Maggioni, Simone Tanelli 

 

Key Findings:  

• Low-level precipitation enhancement due to dominance of collision-coalescence in the 

cloud liquid layer is observed in mixed-phased clouds at mid-latitudes in the 

central/eastern United States during June 2014 – May 2018; 

• Collision-coalescence-dominant profiles show distinguishing features in the GPM DPR 

retrievals when compared to NCC profiles (stratiform precipitation), particularly, 

characteristic vertical slopes of reflectivity at Ku- and Ka-band in the liquid layer; 

• The GPM DPR level 2 retrieval algorithm is not adequate to parametrize the DSD of 

precipitation columns dominated by collision-coalescence. 
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Figure. Conditional distributions of vertical profiles of Zm(Ku), Zm(Ka), and DFRm for CC-

dominant and NCC profiles.  
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Table 1. Reflectivity and DFRm slopes in the liquid layer and the ice layer for CC-dominant and 

NCC profiles. 

   median SD 2KS p-value 
Liquid layer Zm(Ku) slope (dB/km) CC -0.47 2.07 <1e-15 

NCC 1.03 3.38 

Zm(Ka) slope (dB/km) CC 0.52 2.52 <1e-15 
NCC 1.89 4.73 

DFRm slope (dB/km) CC -0.96 2.83 2.4e-05 
NCC -0.76 4.21 

Ice layer Zm(Ku) slope (dB/km) CC -3.60 5.49 9.3e-07 
NCC -3.01 4.76 

Zm(Ka) slope (dB/km) CC -3.13 8.19 2.2e-06 
NCC -2.32 5.89 

DFRm slope (dB/km) CC -0.40 6.77 7.4e-04 
NCC -0.60 5.55 
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Table 2. Macrophysical properties for CC-dominant and NCC profiles. 

 median 
 

SD 2KS p-value 

STH (km) CC 5.89 1.48 
1.8e-15 

NCC 6.63 1.71 

Ice layer depth (km) CC 2.69 1.36 
3.3e-16 

NCC 3.33 1.86 

ML depth (m) CC 638 168 
3.6e-04 

NCC 689 187 

Liquid layer depth (km) CC 3.05 0.68 
4.8e-02 

NCC 3.08 0.59 

Ku enhancement (dB) CC 7.54 4.06 
9.7e-03 

NCC 8.35 3.93 

Ka enhancement (dB) CC 6.18 3.58 
0.14 

NCC 6.61 3.19 
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